Ask Question
20 March, 21:16

Show that in any group of people, two of them have the same number of friends in the group. (Some important assumptions here: no one is a friend of him - or herself, and friendship is symmetrical-if x is a friend of y then y is a friend of x.)

+3
Answers (1)
  1. 20 March, 22:55
    0
    Step-by-step explanation:

    Let us assume there are n people in the group. If possible let each have different number of friends.

    Number of friends can vary from 0 to n-1 only since no one is a friend of him - or herself, and friendship is symmetrical-if x is a friend of y then y is a friend of x.)

    Now n people have friends as 0,1,2 ... n-1 such that each has distinct number of friends.

    But say if A has 0 friends, it means A has no friend,

    but there is one B who has n-1 friends i. e. all the others in the party are friends to him including A

    This is a contradiction. So it follows in any group of people, two of them have the same number of friends in the group.
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “Show that in any group of people, two of them have the same number of friends in the group. (Some important assumptions here: no one is a ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers