Ask Question
2 February, 08:59

As a candle burns, it decreases in height by 2 inches every hour. If the candle is 12 inches tall when it is lit, how will the height change over time?

+5
Answers (2)
  1. 2 February, 10:04
    0
    y=-2x+12

    y = the height of the candle in inches

    x = the amount of time the candle burns

    the height decreases 2 inches each hour so over by the first hour the candle will be 10 inches tall and so on
  2. 2 February, 11:56
    0
    Step-by-step explanation:

    If the candle decreases in height by 2 inches every hour, the rate at which it is decreasing is linear and thus, it is in arithmetic progression. The formula for determining the nth term of an arithmetic sequence is expressed as

    Tn = a + (n - 1) d

    Where

    a represents the initial height of the candle.

    d represents the constant decrease in height per hour.

    n represents the number of hours.

    From the information given,

    a = 12 inches

    d = - 2 inches (the height is decreasing)

    Therefore, the expression showing how the height will change over time is

    Tn = 12 - 2 (n - 1)
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “As a candle burns, it decreases in height by 2 inches every hour. If the candle is 12 inches tall when it is lit, how will the height ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers