f two eventsAandBare independent, then we knowP (A∩B) = P (A) P (B). A fact is that ifAandBare independent, then so are all combinations ofA, B, ... etc. Show that if eventsAandBare independent, thenP (A∩B) = P (A) P (B), and thusAandBare independent. (Hint:P (A∩B) = 1-P (A∪B). Then use addition rule and simplify.)
+3
Answers (1)
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “f two eventsAandBare independent, then we knowP (A∩B) = P (A) P (B). A fact is that ifAandBare independent, then so are all combinations ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Home » Mathematics » f two eventsAandBare independent, then we knowP (A∩B) = P (A) P (B). A fact is that ifAandBare independent, then so are all combinations ofA, B, ... etc.