Ask Question
17 May, 13:08

Consider a population N (t) modeled in continuous-time under the following assumptions: (1) the growth rate is propositional to the difference between the available food supply, fa, and the amount of food necessary for sustaining the existing population, fc; and (2) fc is proportional to the size of the population N. Formulate the model under these assumptions, being sure to specify the sign of any constants you use. Once you have formulated the model, notice that it is a type of model we have studied in lecture.

+3
Answers (1)
  1. 17 May, 15:51
    0
    Step-by-step explanation:

    Given that, N (t) is continuous and it is model as

    1. The rate of growth of N (t) is proportional to the difference between food supply (fa) and the food sustaining (fc)

    Then,

    dN (t) / dt ∝ fa - fc

    2. fc is proportional to the size of the population N.

    i. e.

    fc ∝ N (t)

    We have two proportions.

    Analysis of each proportion.

    1. dN (t) / dt ∝ fa - fc

    Let β be the constant of proportionality

    Then,

    dN (t) / dt = β (fa - fc). Equation 1

    Also for the second proportion

    fc ∝ N (t)

    Let γ be constant of proportionality

    Then,

    fc = γN (t). Equation 2

    Substitute equation 2 into 1

    So,

    dN (t) / dt = β (fa - γN (t))

    Divide both side by β

    1/β dN (t) / dt = fa - γN (t)

    Therefore, fa = 1/β dN (t) / dt + γN (t)

    Note, 1/β is still a constant let Call it β again

    Then,

    fa = γN (t) + β dN (t) / dt

    This is the model formulated

    fa = γN (t) + β dN (t) / dt
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “Consider a population N (t) modeled in continuous-time under the following assumptions: (1) the growth rate is propositional to the ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers