Ask Question
12 August, 02:10

obteber dos números tales que la suma de uno de ellos con el doble del cuadrado del otro sea igual a 7776, y el producto de ambos sea máximo

+5
Answers (1)
  1. 12 August, 04:43
    0
    Answer: the numbers are 5,111.3 and 35.74

    Step-by-step explanation:

    I will answer this in English.

    We have the numbers X and Y, ad we have that:

    X + 2*Y^2 = 7776

    X = 7776 - 2*Y^2

    Now we also want that the product of X and Y is a maximum.

    The equation of maximum product is

    P (Y) = X*Y = (7776 - 2*Y^2) * Y

    = 7776*Y - 2*Y^3

    Now, to find the maximum we must derivate and find the value where P' (Y) is equal to 0

    P' (Y) = 7776 - 6*Y^2 = 0

    7776 = 6*Y^2

    Y = √ (7776/6) = 35.74

    Now, we replace this value in the equation for X and we can find X:

    X = 7776 - 2*Y^2 = X = 7776 - 2 * (35.74) ^2 = 5,111.3
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “obteber dos números tales que la suma de uno de ellos con el doble del cuadrado del otro sea igual a 7776, y el producto de ambos sea máximo ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers