29 November, 05:39

# Jonathan found that the correct equation - 2|8-x|-6=-12 had two possible solutions: x=5 and x=-11. Which explains whether his solutions are correct?A) He is correct because both solutions satisfy the equation.B) He is not correct because he made a sign error.C) He is not correct because there are no solutions.D) He is not correct because there is only one solution: x=5

+2
1. 29 November, 06:41
0
D

Step-by-step explanation:

Check the solutions by substituting the values of x into the left side of the equation and if equal to the right side then they are a solution.

x = 5

- 2 | 8 - 5 | - 6 = - 2 | 3 | - 6 = ( - 2 * 3) - 6 = - 6 - 6 = - 12 ← correct

x = - 11

- 2 | 8 + 11 | - 6 = - 2 | 19 | - 6 = ( - 2 * 19) - 6 = - 38 - 6 = - 44 ≠ - 12

Thus x = 5 is a solution but x = - 11 is not → D

The solutions to the equation are in fact x = 5 and x = 11
2. 29 November, 07:10
0
Step-by-step explanation:

if you want to find the solutions here is a method:

-2|8-x|-6=-12

divid by - 2:

|8-x|+3=6

|8-x| = 3

8-x = 3 or 8-x=-3

x = 5 or x=11