Ask Question
24 February, 06:29

Three students A, B, and C are enrolled in the same class. Suppose that A attends class 30 percent of the time, B attends class 50 percent of the time, and C attends class 80 percent of the time. If these students attend class independently of each other, what is (a) the probability that at least one of them will be in class on a particular day and (b) the probability that exactly one of them will be in class on a particular day?

+4
Answers (1)
  1. 24 February, 08:19
    0
    (a) 0.93

    (b) 0.38

    Step-by-step explanation:

    A attends class 30% of the time, so DO NOT attend 70%

    B attends class 50% of the time, so DO NOT attend 50%

    C attends class 80% of the time, so DO NOT attend 20%

    Writing as probabilities:

    P (A) = 0.30 and P (A') = 0.70

    P (B) = 0.50 and P (B') = 0.50

    P (C) = 0.80 and P (C') = 0.20

    (a) the probability that at least one of them will be in class on a particular day

    Let's call Q the event of none of them be in class on a particular day

    Probability of at least one be in class is the complement of none of them be there, so: 1 - P (Q)

    P (Q) = 0.7*0.5*0.2 = 0.07

    1 - P (Q) = 1 - 0.07 = 0.93

    (b) the probability that exactly one of them will be in class on a particular day?

    One of them exactly be in class is

    A is B not C not or A not B is C not or A not B not and C is, so

    P (A). P (B'). P (C') + P (A'). P (B). P (C') + P (A'). P (B'). P (C)

    0.3*0.5*0.2 + 0.7*0.5*0.2 + 0.7*0.5*0.8 =

    0.03 + 0.07 + 0.28 = 0.38
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “Three students A, B, and C are enrolled in the same class. Suppose that A attends class 30 percent of the time, B attends class 50 percent ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers