Ask Question
22 August, 01:01

Prove that

Cos (A+B) + Sin (A-B) = 2sin (45+A). cos (45+B)

+4
Answers (1)
  1. 22 August, 04:35
    0
    Step-by-step explanation:

    cos (A+B) + sin (A-B) = 2 sin (45°+A) cos (45° + B)

    = 2 (sin45°cosA + cos45°sinA) (cos45°cosB - sin45°sinB)

    But sin45=cos45 = (sqrt2) / 2

    = 2 ((sqrt2) / 2 * cosA + (sqrt2) / 2 * sinA) ((sqrt2) / 2 * cosB - (sqrt2) / 2 * sinB)

    = 2 ((sqrt2) / 2 * (cosA + sinA)) * ((sqrt2) / 2 * (cosB - sinB))

    = 2 * (sqrt2) / 2 * (sqrt2) / 2 * (cosA + sinA) * (cosB - sinB)

    = (cosA + sinA) * (cosB - sinB)

    = cosAcosB + sinAcosB - cosAsinB - sinAsinB

    Regrouping:

    = (cosAcosB - sinAsinB) + (sinAcosB - cosAsinB)

    = cos (A+B) + sin (A-B)
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “Prove that Cos (A+B) + Sin (A-B) = 2sin (45+A). cos (45+B) ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers