Ask Question
16 February, 05:21

Simplify the following Boolean expressions to a minimum number of literals

a. xy+xy'

b. (x+y) (x+y')

c. (a+b+c') (a'b'+c)

d. a'bc+abc'+abc+a'bc'

e. (x+y) ' (x'+y') f. xy+x (wz+wz')

+4
Answers (1)
  1. 16 February, 08:38
    0
    a. xy+xy' = x

    b. (x+y) (x+y') = x

    c. (a+b+c') (a'b'+c) = c (a + b) + a'b'c'

    d. a'bc+abc'+abc+a'bc' = b

    e. (x+y) ' (x'+y') = x'y'

    f. xy+x (wz+wz') = x (y+w)

    Explanation:

    a) xy+xy'

    = x (y + y′) / / taking x common

    = x. 1 / / y + y' = 1

    = x

    b) (x+y) (x+y')

    = xx + xy′ + yx + yy′ / /multiplying x+y with x+y'

    = x + xy′ + xy + 0 / / xx = 1 yy' = 0

    = x (1 + y′ + y) / / taking x common

    = x. 1 / / y+y' = 1

    = x

    c) (a+b+c') (a'b'+c)

    = aa'b' + ac + a'b'b + bc + a'b'c' + cc'

    = 0 + ac + 0 + bc + a'b'c' + 0 / / aa' = 0 bb'=0 cc' = 0

    = ac + bc + a'b'c'

    = c (a + b) + a'b'c'

    d) a'bc + abc' + abc + a'bc'

    = b (a'c + ac' + ac + a'c') / /taking b common

    = b (a'c + a'c' + ac' + ac)

    = b (a' (c+c') + a (c+c') / / taking a common

    = b (a' (1) + a (1)) / /c+c' = 1

    = b (a'+a) / /a+a'=1

    = b (1)

    = b

    e) (x+y) ' (x'+y')

    = ((x+y) ' (x'+y'))

    = ((x+y) + (x'+y') ') '

    = (x + y + (x''y'')) '

    = (x + y + (xy)) '

    = (x + y + xy) '

    = (x (1 + y) + y) '

    = (x + y) '

    = x'y'

    OR it can be done as:

    e) (x+y) ' (x'+y')

    = x′y′ (x′+y′) / / (x+y) ' = x'y'

    = x′y′ + x′y′ / / (xy) ' = x'+y'

    = x′y′

    f. xy+x (wz+wz')

    = xy + xw (z+z′) / /taking w common

    = xy + xw / / z+z'=1

    = x (y+w)
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “Simplify the following Boolean expressions to a minimum number of literals a. xy+xy' b. (x+y) (x+y') c. (a+b+c') (a'b'+c) d. ...” in 📙 Computers & Technology if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers