Ask Question
5 June, 10:21

Find the derivative of y = sin2 (4x) cos (3x) with respect to x.

A. 8 sin (4x) cos (4x) cos (3x) - 3 sin2 (4x) sin (3x)

B. 8 sin (4x) cos (3x) - 3 sin2 (4x) sin (3x)

C. 8 sin (4x) cos (4x) cos (3x) - 3 sin2 (4x) sin (3x) cos (3x)

D. 8 cos (4x) cos (3x) - 3 sin2 (4x) sin (3x)

+2
Answers (1)
  1. 5 June, 11:58
    0
    Expanded:

    y = sin (4x) * sin (4x) * cos (3x)

    need to use the product rule and chain rule

    look at individual derivatives, use chain rule

    d/dx sin (4x) = 4cos (4x)

    d/dx cos (3x) = - 3sin (3x)

    put it together using product rule

    dy/dx = 4cos (4x) * sin (4x) * cos (3x) + 4cos (4x) * sin (4x) * cos (3x) - 3sin (3x) * sin (4x) * sin (4x)

    simplify

    dy/dx = 8cos (4x) * sin (4x) * cos (3x) - 3sin (3x) * sin2 (4x)

    answer is A.
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “Find the derivative of y = sin2 (4x) cos (3x) with respect to x. A. 8 sin (4x) cos (4x) cos (3x) - 3 sin2 (4x) sin (3x) B. 8 sin (4x) cos ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers