Ask Question
13 August, 22:52

The weights of steers in a herd are distributed normally. the standard deviation is 200 lbs and the mean steer weight is 1300 lbs. find the probability that the weight of a randomly selected steer is between 1000 and 1437 lbs. round your answer to four decimal places.

+1
Answers (1)
  1. 14 August, 01:10
    0
    Given a mean = 1300 and a Ď = 200, we can calculate that the lower bound of 1000 is (1000 - 1300) / 200 = - 1.5 standard deviations below the mean. The upper bound is (1437 - 1300) / 200 = 0.685 standard deviations from the mean. Using the cumulative distribution function, we can calculate that the probability a randomly chosen steer lies on the interval [1000, 1437] is CDF (0.685) - CDF (-1.5) = 0.68652083824480004 p = 0.6865
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “The weights of steers in a herd are distributed normally. the standard deviation is 200 lbs and the mean steer weight is 1300 lbs. find the ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers