Ask Question
20 February, 07:47

A ladder 5 feet long leans against a wall and makes an angle of 65% with the ground. a. Find, to the nearest tenth of a foot, the distance from the wall to the base of the ladder.

+2
Answers (1)
  1. 20 February, 10:08
    0
    Answer: 2.1 feet

    Step-by-step explanation:

    The ladder forms a right angle triangle with the wall and the ground. The length of the ladder represents the hypotenuse of the right angle triangle. The height from the top of the ladder to the base of the wall represents the opposite side of the right angle triangle.

    The distance, d from the bottom of the ladder to the base of the wall represents the adjacent side of the right angle triangle.

    To determine the distance, d from the bottom of the ladder to the base of the wall, we would apply we would apply the cosine trigonometric ratio.

    Cos θ = adjacent side/hypotenuse. Therefore,

    Cos 65 = d/5

    d = 5Cos 65 = 5 * 0.4226

    d = 2.1 feet
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “A ladder 5 feet long leans against a wall and makes an angle of 65% with the ground. a. Find, to the nearest tenth of a foot, the distance ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers