Ask Question
13 June, 10:13

Use cos (2x) = cos2 (x) - sin2 (x) to establish the following formulas.

a. cos2 (x) = 1 + cos (2x) / 2

b. sin2 (x) = 1 - cos (2x) / 2

+2
Answers (1)
  1. 13 June, 10:28
    0
    a. cos2 (x) = 1 + cos (2x) / 2

    b. sin2 (x) = 1 - cos (2x) / 2

    Step-by-step explanation:

    From cos (2x) = cos2 (x) - sin2 (x)

    a. cos2 (x) = cos (2x) + sin2 (x)

    but sin2 (x) = 1 - cos2 (x)

    Therefore,

    cos2 (x) = cos (2x) + 1 - cos2 (x)

    cos2 (x) + cos2 (x) = cos (2x) + 1

    2 cos2 (x) = cos (2x) + 1

    cos2 (x) = (cos (2x) + 1) / 2

    Hence cos2 (x) = 1 + cos (2x) / 2

    b. sin2 (x) = 1 - cos (2x) / 2

    cos2 (x) = 1 - sin2 (x)

    Therefore,

    sin2 (x) = cos2 (x) - cos (2x)

    sin2 (x) = 1 - sin2 (x) - cos (2x)

    2sin2 (x) = 1 - cos (2x)

    sin2 (x) = (1 - cos (2x)) / 2

    Hence the proof.
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “Use cos (2x) = cos2 (x) - sin2 (x) to establish the following formulas. a. cos2 (x) = 1 + cos (2x) / 2 b. sin2 (x) = 1 - cos (2x) / 2 ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers