Ask Question
20 January, 10:45

Prove that given any three consecutive integers, one of them is divisible by 3. Hint: What are the possible remainders when we divide an integer by 3?

+3
Answers (1)
  1. 20 January, 12:55
    0
    it is proved that from the any three consecutive integers one of them is divisible by 3.

    Step-by-step explanation:

    Let the first integer = x

    The second consecutive integer = x + 1

    The third consecutive integer = x + 2

    Case 1. take x = 1

    The value of first integer = 1

    The value of second integer = 1 + 1 = 2

    The value of third integer = 1 + 2 = 3

    Here the third integer is divisible by 3.

    Case 2. take x = 2

    The value of first integer = 2

    The value of second integer = 2 + 1 = 3

    The value of third integer = 2 + 2 = 4

    Here the second integer is divisible by 3.

    Case 3. take x = 3

    The value of first integer = 3

    The value of second integer = 3 + 1 = 4

    The value of third integer = 3 + 2 = 5

    Here the first integer is divisible by 3.

    Thus it is proved that from the any three consecutive integers one of them is divisible by 3.
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “Prove that given any three consecutive integers, one of them is divisible by 3. Hint: What are the possible remainders when we divide an ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers