Ask Question
20 August, 13:13

Which equation has infinitely many solutions?

O 5 (2x + 4) = 10x - 12

O 5 (2x + 4) = 10 (x + 2)

O 5 (2x + 4) = 12x

O 5 (2x + 10) = 20 (x + 1)

+5
Answers (2)
  1. 20 August, 14:12
    0
    the answer is B
  2. 20 August, 15:31
    0
    5 (2x + 4) = 10 (x + 2)

    Step-by-step explanation:

    An equation has infinitely many solutions when they end in 0 = 0, that is, both sides are exactly equivalent. In this case, basically, all real numbers are solution, it's like a line under the same line, it's like the reflexive property, every number is equal to itself.

    The expression that fulfil that definition is the second one, because:

    5 (2x + 4) = 10 (x + 2) 10x + 20 = 10x + 2010x - 10x = 20 - 20x0 = 0

    Therefore, it's demonstrated that the second equation has infinite solutions, that is, all numbers are solutions.
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “Which equation has infinitely many solutions? O 5 (2x + 4) = 10x - 12 O 5 (2x + 4) = 10 (x + 2) O 5 (2x + 4) = 12x O 5 (2x + 10) = 20 (x + ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers