Ask Question
23 September, 22:38

Sin (a+b) * sin (a-b) = cos^2b-cos^2a

+3
Answers (1)
  1. 23 September, 23:27
    0
    Step-by-step explanation:

    To prove sin (a+b) * sin (a-b) = cos^2b-cos^2a

    we simplify the left side sin (a+b) * sin (a-b) first

    sin (a+b) = sin a cos b + cos a sin b

    sin (a-b) = sin a cos b - cos a sin b

    sin (a+b) * sin (a-b) = (sin a cos b + cos a sin b) x (sin a cos b - cos a sin b)

    sin a cos b ((sin a cos b + cos a sin b) - cos a sin b (sin a cos b + cos a sin b)

    open the bracket

    sin a cos b (sin a cos b) + sin a cos b (cos a sin b) - cos a sin b (sin a cos b) + cos a sin b (cos a sin b)

    sin²a cos²b + sin a cos b cos a sin b - cos a sin b sin a cos b + cos²a sin²b

    sin²a cos²b + 0 + cos²a sin²b

    sin²a cos²b + cos²a sin²b

    sin²a = 1-cos² a sin²b = 1-cos² b

    (1-cos² a) cos² b - cos² a (1-cos² b)

    = cos² b - cos² a cos² b - cos² a + cos² a cos² b

    choose like terms

    cos² b - cos² a - cos² a cos² b + cos² a cos² b = cos² b - cos² a + 0

    cos² b - cos² a

    left hand side equals right hand side
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “Sin (a+b) * sin (a-b) = cos^2b-cos^2a ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers