Ask Question
14 April, 20:24

Prove that

1 / cos (x) - cos (x) = sin (x) ∙ tan (x) for x ≠?2 + k, for all integers k.

+5
Answers (1)
  1. 14 April, 22:40
    0
    Answer: From the given expression we can get the fundamental trigonometry identity

    Step-by-step explanation:

    1 : cos (*) - cos (*) = sin (*) * tan (*) ⇒

    [1 : cos (*) ] - cos (*) = sin (*) * sin (*) / cos (*)

    1 / cos (*) - cos (*) = sin² (*) / cos (*) ⇒cos (*) / cos (*) - cos² (*) = sin² (*)

    1 - cos² (*) = sin² (*)

    1 = cos² (*) + sin² (*) fundamental trigonometry identity
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “Prove that 1 / cos (x) - cos (x) = sin (x) ∙ tan (x) for x ≠?2 + k, for all integers k. ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers