Ask Question
6 September, 10:05

Use Boolean algebra to simplify the given Boolean expression. Determine the minimum (i. e. simplest) expression. F (A, B, C) = A. B. C + A. B'. C + A'. B. C + A. B. C' a) F = A. C + A'. B. C + A. B. C'b) F = A. B'. C + B. C + A. B. C'c) F = A'. B. C + A. B'. C + A. Bd) F = A. B + A. C + B. Ce) F = A. B'. C + A'. B. C + A. B. C'

+3
Answers (1)
  1. 6 September, 13:49
    0
    Answer:C

    Step-by-step explanation:

    A. B. C+A. B'. C+A'. B. C+A. B. C'

    By distributive law : A. B. C+A. B. C' = A. B (C+C')

    By complement law: C+C'=1, so

    A. B (C+C') = A. B

    Therefore the answer will be A. B'. C+A'. B. C+A. B
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “Use Boolean algebra to simplify the given Boolean expression. Determine the minimum (i. e. simplest) expression. F (A, B, C) = A. B. C + A. ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers