Ask Question
15 November, 20:39

A goat enclosure is in the shape of a right triangle. One leg of the enclosure is built against the side of the barn. The other leg is 4 feet more than the leg against the barn. The hypotenuse is 8 feet more than the leg along the barn. Find the three

sides of the goat enclosure.

+1
Answers (2)
  1. 15 November, 20:45
    0
    20,16,12
  2. 15 November, 21:30
    0
    The lengths are

    8 + 8[root]3, 12 + 8[root]3 and 20 + 8[root]3.

    Step-by-step explanation:

    Let the side against the barn be xft

    We were told that the adjacent side is 4ft more than the side against the barn. This means it has a length of (x + 4) ft.

    Lastly, we are told that the hypotenuse is 8ft longer than the side along the barn I. e (x + 4 + 8) ft = (x + 12) ft.

    Since the three lengths form a triangle, the square of the hypotenuse equals the square of the adjacent side plus the square of the opposite side. This is the pythagoras' theorem.

    Mathematically, this can be written as follows:

    (x + 12) ^2 = x^2 + (x + 4) ^2

    This yields x^2 + 24x + 144 = x^2 + x^2 + 8x + 16

    x^2 + 24x + 144 = 2x^2 + 8x + 16

    Rearranging this will yield:

    x^2 - 16x - 128 = 0

    Using the quadratic formula yields the following values for x:

    8 - 8[root]3 and 8 + 8[root 3]

    Since the first is negative, we discard it and the only correct value of x is 8 + 8[root]3

    Now the other length is 12 + 8[root]3 and 20 + 8[root]3.
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “A goat enclosure is in the shape of a right triangle. One leg of the enclosure is built against the side of the barn. The other leg is 4 ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers