Ask Question
10 October, 10:51

While building a snowman, a large snowball is created so that the radius is changing at the rate of 5 inches per hour. How fast is the volume of the snowball changing at the instant the snowball has a radius of 10 inches?

+1
Answers (1)
  1. 10 October, 10:58
    0
    2000π in³/s

    or 6283.2 in³/s

    Step-by-step explanation:

    dr/dt = 5

    volume of sphere is given as

    v = (4/3) (π) r³

    differentitate wrt r

    dv/dr = 3*4/3 * π*r²

    dv/dr = 4πr²

    put r = 10

    dv/dr = 4π (10) ²

    dv/dr = 400π

    by chain rule

    dv/dt = dv/dr * dr/dt

    dv/dt = 400π * 5

    dv/dt = 2000π in³/s

    or dv/dt = 6283.2 in³/s
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “While building a snowman, a large snowball is created so that the radius is changing at the rate of 5 inches per hour. How fast is the ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers