Ask Question
5 March, 02:29

1st. (2 root 2 + root 3) (2 root 3 - root 2)

2nd. (root 5 + 2 root 10) (3 root 5 + root 10)

3rd. (4 root 6 - 3 root 3) (2 root 3 - 5)

4rd. (6 root 3 - 5 root 2) (2 root 2 - root 3)

5th. (root 10 - 3) (4 - 3 root 10)

+4
Answers (1)
  1. 5 March, 03:58
    0
    1st: 3*root6 + 5

    2nd: 35*root2 + 115

    3rd: 24*root2 - 20*root6 + 15*root3 - 18

    4th: 17*root6 - 38

    5th: 13*root10 - 42

    Step-by-step explanation:

    To simplify these expressions we need to use the distributive property:

    (a + b) * (c + d) = ac + ad + bc + bd

    So simplifying each expression, we have:

    1st.

    (2 root 2 + root 3) (2 root 3 - root 2)

    = 4*root6 - 2*2 + 2*3 - root6

    = 3*root6 - 4 + 9

    = 3*root6 + 5

    2nd.

    (root 5 + 2 root 10) (3 root 5 + root 10)

    = 3 * 5 + root50 + 6*root50 + 2*10

    = 15 + 5*root2 + 30*root2 + 100

    = 35*root2 + 115

    3rd.

    (4 root 6 - 3 root 3) (2 root 3 - 5)

    = 8*root18 - 20*root6 - 6*3 + 15root3

    = 24*root2 - 20*root6 + 15*root3 - 18

    4rd.

    (6 root 3 - 5 root 2) (2 root 2 - root 3)

    = 12*root6 - 6*3 - 10*2 + 5*root6

    = 17*root6 - 18 - 20

    = 17*root6 - 38

    5th.

    (root 10 - 3) (4 - 3 root 10)

    = 4*root10 - 3*10 - 12 + 9*root10

    = 13*root10 - 30 - 12

    = 13*root10 - 42
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “1st. (2 root 2 + root 3) (2 root 3 - root 2) 2nd. (root 5 + 2 root 10) (3 root 5 + root 10) 3rd. (4 root 6 - 3 root 3) (2 root 3 - 5) 4rd. ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers