Ask Question
16 December, 17:14

solve this system of linear equations. Separate the X - and Y - values with a comma. - 9x+2y=-16 19x+3y=41

+5
Answers (2)
  1. 16 December, 18:50
    0
    x=2 and y=1

    proof:

    -9x+2y=-16

    -9 (2) + 2 (1) = -16

    which is a true statement
  2. 16 December, 19:19
    0
    (2, 1)

    Step-by-step explanation:

    The best way to do this to avoid tedious fractions is to use the addition method (sometimes called the elimination method). We will work to eliminate one of the variables. Since the y values are smaller, let's work to get rid of those. That means we have to have a positive and a negative of the same number so they cancel each other out. We have a 2y and a 3y. The LCM of those numbers is 6, so we will multiply the first equation by a 3 and the second one by a 2. BUT they have to cancel out, so one of those multipliers will have to be negative. I made the 2 negative. Multiplying in the 3 and the - 2:

    3 (-9x + 2y = - 16) - -> - 27x + 6y = - 48

    -2 (19x + 3y = 41) - -> - 38x - 6y = - 82

    Now you can see that the 6y and the - 6y cancel each other out, leaving us to do the addition of what's left:

    -65x = - 130 so

    x = 2

    Now we will go back to either one of the original equations and sub in a 2 for x to solve for y:

    19 (2) + 3y = 41 so

    38 + 3y = 41 and

    3y = 3. Therefore,

    y = 1

    The solution set then is (2, 1)
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “solve this system of linear equations. Separate the X - and Y - values with a comma. - 9x+2y=-16 19x+3y=41 ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers