Ask Question
10 July, 23:22

The sides of a square field are 24 meters. A sprinkler in the center of the field sprays a circular area with a diameter that corresponds to a side of the field. How much of the field is not reached by the sprinkler? Round your answer to the nearest hundredth. Use 3.14 for π.

+4
Answers (1)
  1. 11 July, 02:10
    0
    Step-by-step explanation:

    The formula for determining the area of the square field is expressed as

    Area = Length²

    Length = 24 meters

    Area = 24² = 576 m²

    The formula for determining the circular area covered by the sprinkler is expressed as

    Circular area = πr²

    Where

    r represents the radius

    π = 3.14

    From the information given,

    Diameter = 24 meters

    Radius = diameter/2 = 24/2 = 12 meters

    Area = 3.14 * 12² = 452.16 m²

    Therefore, the area of the field not reached by the sprinkler is

    576 - 452.16 = 123.84 m²
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “The sides of a square field are 24 meters. A sprinkler in the center of the field sprays a circular area with a diameter that corresponds ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers