Ask Question
12 April, 00:39

Given the functions k (x) = 2x^2 - 5 and p (x) = x - 3, find (k ∘ p) (x).

a. (k ∘ p) (x) = 2x^2 - 6x + 4

b. (k ∘ p) (x) = 2x^2 - 12x + 13

c. (k ∘ p) (x) = 2x^2 - 12x + 18

d. (k ∘ p) (x) = 2x2 - 8

+1
Answers (2)
  1. 12 April, 03:13
    0
    (k ∘ p) (x) = 2x^2-12x+13
  2. 12 April, 03:58
    0
    (k ∘ p) (x) = 2x^2-12x+13

    Step-by-step explanation:

    (k ∘ p) (x) = k (p (x))

    (k ∘ p) (x) = k (x-3)

    (k ∘ p) (x) = 2 (x-3) ^2-5

    (k ∘ p) (x) = 2 (x-3) (x-3) - 5

    Use foil on (x-3) (x-3) or use this as a formula:

    (x+a) ^2=x^2+2ax+a^2.

    (k ∘ p) (x) = k (p (x))

    (k ∘ p) (x) = k (x-3)

    (k ∘ p) (x) = 2 (x-3) ^2-5

    (k ∘ p) (x) = 2 (x-3) (x-3) - 5

    (k ∘ p) (x) = 2 (x^2-6x+9) - 5

    Distribute: multiply terms inside () by 2:

    (k ∘ p) (x) = 2x^2-12x+18-5

    (k ∘ p) (x) = 2x^2-12x+13
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “Given the functions k (x) = 2x^2 - 5 and p (x) = x - 3, find (k ∘ p) (x). a. (k ∘ p) (x) = 2x^2 - 6x + 4 b. (k ∘ p) (x) = 2x^2 - 12x + 13 ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers