Ask Question
13 February, 05:33

Compute the value of the following expressions: 323 mod 5 323 div 5 - 323 mod 5 - 323 div 5 327 mod 3 (64 · (-67) + 201) mod 7 (〖38〗^12) mod 6 (〖38〗^12) mod 3

+4
Answers (1)
  1. 13 February, 07:57
    0
    323 mod 5 = 3

    -323 mod 5 = - 3

    327 mod 3 = 0

    (64 * (-67) + 201) mod 7 = 6

    (38^12) mod 6 = 4

    (38^12) mod 3 = 1

    Step-by-step explanation:

    The modulo operation looks for remainders from the quotients. In order to find them, divide the whole number by the mod number. Then take just the decimal after the whole answer and multiply it by the mod number.

    323 mod 5

    323/5 = 64.6

    .6 * 5 = 3

    -323 mod 5

    323/5 = - 64.6

    -.6 * 5 = - 3

    327 mod 3

    327/5 = 109

    0 * 3 = 0

    (64 * (-67) + 201) mod 7

    64 * - 67 = - 4288 + 201 = 4087

    4087/7 = 583.85714

    .85714 * 7 = 6

    (38^12) mod 6

    38^12 = 9.07x10^18

    9.07x10^18/6 = 1510956318082499242.6666667

    .666667 * 6 = 4

    (38^12) mod 3

    38^12 = 9.07x10^18

    9.07x10^18/3 = 3021912636164998485.333333

    .3333333 * 3 = 1
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “Compute the value of the following expressions: 323 mod 5 323 div 5 - 323 mod 5 - 323 div 5 327 mod 3 (64 · (-67) + 201) mod 7 (〖38〗^12) ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers