Ask Question
30 July, 18:37

For the problem, use the discriminant to determine the number of real solutions for the equation. Then, find the solutions and check to see if they make sense in the context of the problem.

A soccer player kicks the ball to a height of 2 meters inside the goal. The equation for the height h of the ball at time t is h = - 4.9t^2 - 4t + 4. Find the time the ball reached the goal. Enter the time to two decimal places.

+4
Answers (1)
  1. 30 July, 19:42
    0
    Discriminant = 55.2 > 0 - > 2 real solutions

    Solutions: t1 = - 1.1663 s and t2 = 0.35 s

    The solution t1 doesn't make sense for this problem, as we can't have a negative value for the time.

    So the solution is t2 = 0.35 s

    Step-by-step explanation:

    To find the time when the ball will reach the height of 2 meters, we just need to use the value of h = 2 in the equation given. So, we have that:

    -4.9t^2 - 4t + 4 = 2

    -4.9t^2 - 4t + 2 = 0

    For this equation, we have the constants a = - 4.9, b = - 4 and c = 2. So the discriminant Delta is:

    Delta = b^2 - 4ac = 16 + 39.2 = 55.2

    sqrt (Delta) = 7.4297

    As Delta > 0, we have 2 real solutions

    t1 = (-b + sqrt (Delta)) / 2a = (4 + 7.4297) / (-9.8) = - 1.1663 s

    t2 = (-b - sqrt (Delta)) / 2a = (4 - 7.4297) / (-9.8) = 0.35 s

    Number of real solutions: 2

    Solutions: t1 = - 1.1663 s and t2 = 0.35 s

    The solution t1 doesn't make sense for this problem, as we can't have a negative value for the time.

    So the solution is t2 = 0.35 s
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “For the problem, use the discriminant to determine the number of real solutions for the equation. Then, find the solutions and check to see ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers