Ask Question
26 November, 08:23

Prove the identity cos (x-y) - cos (x+y) = 2sinxsiny

+3
Answers (1)
  1. 26 November, 11:48
    0
    cos (x-y) - cos (x+y) = 2sinxsiny

    Use cosine addition and subtraction identities:

    cos (x-y) = cos x cos y + sin x sin y

    cos (x+y) = cos x cos y - sin x sin y

    So

    LHS = cos (x-y) - cos (x+y)

    = cos x cos y + sin x sin y - (cos x cos y - sin x sin y)

    = cos x cos y + sin x sin y - cos x cos y + sin x sin y

    cos x cos y and - cos x cos y are additive inverses; they sum together to get 0.

    LHS = sin x sin y + sin x sin y

    = 2 sin x sin y

    = RHS
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “Prove the identity cos (x-y) - cos (x+y) = 2sinxsiny ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers