Ask Question
15 November, 00:30

Find the fifth roots of 243 (cos 260° + i sin 260°)

+1
Answers (1)
  1. 15 November, 03:54
    0
    use De Moivre's Theorem:

    ⁵√[243 (cos 260° + i sin 260°) ] = [243 (cos 260° + i sin 260°) ]^ (1/5)

    = 243^ (1/5) (cos (260 / 5) ° + i sin (260 / 5) °)

    = 3 (cos 52° + i sin 52°)

    z1 = 3 (cos 52° + i sin 52°) ←← so that's the first root

    there are 5 roots so the angle between each root is 360/5 = 72°

    then the other four roots are:

    z2 = 3 (cos (52 + 72) ° + i sin (52 + 72) °) = 3 (cos 124° + i sin 124°)

    z3 = 3 (cos (124 + 72) ° + i sin (124 + 72) °) = 3 (cos 196° + i sin 196°)

    z4 = 3 (cos (196 + 72) ² + i sin (196 + 72) °) = 3 (cos 268° + i sin 268°)

    z5 = 3 (cos (268 + 72) ° + i sin (268 + 72) °) = 3 (cos 340° + i sin 340°)
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “Find the fifth roots of 243 (cos 260° + i sin 260°) ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers