Ask Question
5 November, 19:32

1 - 2 sin (θ) = cos (2θ)

+3
Answers (1)
  1. 5 November, 23:05
    0
    Cos (2 Ф) = cos² (Ф) - sin² (Ф)

    sin² (Ф) + cos² (Ф) = 1 ⇒cos² (Ф) = 1-sin² (Ф)

    Then:

    1-2sin (Ф) = cos (2 Ф)

    1-2sin (Ф) = cos² (Ф) - sin² (Ф)

    1-2sin (Ф) = (1-sin² (Ф)) - sin² (Ф)

    1-2sin (Ф) = 1-2sin² (Ф)

    2sin² (Ф) - sin (Ф) + 1-1=0

    2sin² (Ф) - 2sin (Ф) = 0

    2sin (Ф) (sin (Ф) - 1) = 0

    We have to solve two equations:

    1)

    2sin (Ф) = 0

    sin (Ф) = 0/2

    sin (Ф) = 0

    Ф=sin⁻¹ 0=kπ (1) K∈Z

    2)

    sin (Ф) - 1=0

    sin (Ф) = 1

    Ф=sin⁻¹ 1=π/2 + 2Kπ (2) K∈Z

    Solution=solution₁ + solution₂

    Answer: kπ U π/2+2kπ; K = ( ... - 3.-2,-1,0,1,2,3, ...)
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “1 - 2 sin (θ) = cos (2θ) ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers