Ask Question
2 June, 16:19

A scientist has two solutions, which she has labeled Solution A and Solution B. Each contains salt. She knows that Solution A is 60% salt and Solution B is 85% salt. She wants to obtain 30 ounces of a mixture that is 80% salt. How many ounces of each solution should she use?

+1
Answers (1)
  1. 2 June, 19:11
    0
    Let x be the amount (in ounces) of solution A and y the amount of solution B that the scientist uses. She wants a new solution with a total volume of 30 ounces, so that

    x + y = 30

    Each ounce of solution A contributes 0.6 oz of salt, and each ounce of solution B contributes 0.85 oz of salt. The new solution needs to have 80% of 30 oz of salt, or 24 oz, so that

    0.6x + 0.85y = 24

    x + y = 30 = => y = 30 - x

    0.6x + 0.85 (30 - x) = 24 = => 0.6x + 25.5 - 0.85x = 24 = => 0.25x = 1.5 = => x = 1/6 (about 0.167)

    y = 30 - 1/6 = => y = 179/6 (or about 29.83)
Know the Answer?
Not Sure About the Answer?
Get an answer to your question ✅ “A scientist has two solutions, which she has labeled Solution A and Solution B. Each contains salt. She knows that Solution A is 60% salt ...” in 📙 Mathematics if there is no answer or all answers are wrong, use a search bar and try to find the answer among similar questions.
Search for Other Answers